泽连斯基首次公开指责中国,成人片在线免费看,奇米第四狠狠婷婷,白浆 91av

撥號18861759551

你的位置:首頁 > 技術文章 > 顯微鏡和三色染色鏡的分析

技術文章

顯微鏡和三色染色鏡的分析

技術文章

Microscopy and the Analysis of a Trichrome Stain

When imaging biological material, more often than not it is extremely difficult to differentiate between various organelles and tissues. Light scatters differently from each structure, but the change in contrast is so slight it becomes a strain to analyze the specimen. The first triple stain used to increase contrast and improve recognition dates back to 1880. One of the early methods of staining tissues for histology was developed by Claude Pierre Masson, and has since been coined the Masson trichrome stain.

 

Masson's trichrome stain is incredibly effective in differentiating cells and their components from the surrounding connective tissues. One of the most common stain types, which has been used on the dermal tissue sample seen in the images within this article, yields a number of colors where cell nuclei appear dark red, collagen and other tissues appear green or blue, and cell cylasm appear red/purple (Jones, 2010). These stains have been imaged under brightfield and darkfield illumination, and then again with specific filters to selectively focus on the cellular constituents of the epidermis. The primary application for the epidermal trichrome stains is differentiating healthy collagen and muscles from connective tissues onset with tumorigenesis. Typically the tumors proliferate from muscle cells and fibroblasts deep in the dermal tissue (Blitterswijk, 2010).

 

List of Components for Analysis of Trichrome Stain Setup

 

Description

Stock No.

1.

20X Mitutoyo Plan Apo Infinity Corrected Long WD Objective

#46-145

2.

MT-1 Accessory Tube Lens

#54-774

3.

TECHSPEC® Mitutoyo MT-1/MT-2 C-mount Adapter

#58-329

4.

543nm CWL, 22nm Bandwidth, OD 6 Fluorescence Filter

#67-032

5.

605nm CWL, 15nm Bandwidth, OD 6 Fluorescence Filter

#86-356

6.

EO-3112C ½" CMOS Color USB Camera

#59-367

7.

115V, MI-150 Fiber Optic Illuminator

#59-235

8.

4.25" x 3.37" Fiber Optic Backlight

#39-826

 

The image setup consists of a number of components, which are differentiated as optical and imaging components. The imaging products that will be discussed are the camera and illumination, and the optical components that will be discussed include the microscope objective lens and optical filters.

Figure 1: Brightfield Image of Dermal Tissue

 

Figure 2: Darkfield Imaging of Dermal Tissue

 

When comparing Figures 1 and 2, the visual differences are significant. A brightfield image is formed with the illumination source below the sample, and then transmitted light propagates through the sample to the sensor forming a bright, white background with sharp color. A darkfield image is formed by directing light at an oblique angle through the sample, forming a hollow cone of light which is collected by the objective. Darkfield illumination typically yields a dark background with sharp color, but in the case of Figure 2, the collagen and muscle fibers interfered with the light path and caused a blur of light and color. The dark background is hardly evident and only two distinct colors are visible. When analyzing histological stains, brightfield illumination is the preferred technique for lighting a sample.

Figure 3: Brightfield Image of Dermal Tissue filtered with Green

Figure 4: Brightfield Image of Dermal Tissue filtered with Red

 

When comparing Figure 3 with Figure 4, there is once again a significant visual difference. The most obvious feature is the change in color from green to red due to a different hardcoated filter being positioned in the optical path. The less obvious difference is the varying contrast levels caused by the filters at specific regions of the dermal tissue. For example, Figure 3 exhibits a distinct ring at the central region of the cell with additional matter within. In Figure 4, the ring is extremely faint and the internal matter is not visible. With that said, the cell and surrounding dense materials are more evident in Figure 3, whereas the muscle fibers and collagen are more pronounced in Figure 4.

 

Researchers have discovered a number of methods to quickly and accuray diagnose many ailments, such as many forms of cancer. As technologies continue to advance at an increasing rate, the cost of histology analysis will continue to decrease as images and videos can be easily transmitted across the globe. Even with constantly changing technology, the trichrome stain is still one of the most powerful techniques available in the field of histology and diagnostics over 100 years later.

 

Microscopy and the Analysis of a Trichrome Stain

When imaging biological material, more often than not it is extremely difficult to differentiate between various organelles and tissues. Light scatters differently from each structure, but the change in contrast is so slight it becomes a strain to analyze the specimen. The first triple stain used to increase contrast and improve recognition dates back to 1880. One of the early methods of staining tissues for histology was developed by Claude Pierre Masson, and has since been coined the Masson trichrome stain.

 

Masson's trichrome stain is incredibly effective in differentiating cells and their components from the surrounding connective tissues. One of the most common stain types, which has been used on the dermal tissue sample seen in the images within this article, yields a number of colors where cell nuclei appear dark red, collagen and other tissues appear green or blue, and cell cylasm appear red/purple (Jones, 2010). These stains have been imaged under brightfield and darkfield illumination, and then again with specific filters to selectively focus on the cellular constituents of the epidermis. The primary application for the epidermal trichrome stains is differentiating healthy collagen and muscles from connective tissues onset with tumorigenesis. Typically the tumors proliferate from muscle cells and fibroblasts deep in the dermal tissue (Blitterswijk, 2010).

 

List of Components for Analysis of Trichrome Stain Setup

 

Description

Stock No.

1.

20X Mitutoyo Plan Apo Infinity Corrected Long WD Objective

#46-145

2.

MT-1 Accessory Tube Lens

#54-774

3.

TECHSPEC® Mitutoyo MT-1/MT-2 C-mount Adapter

#58-329

4.

543nm CWL, 22nm Bandwidth, OD 6 Fluorescence Filter

#67-032

5.

605nm CWL, 15nm Bandwidth, OD 6 Fluorescence Filter

#86-356

6.

EO-3112C ½" CMOS Color USB Camera

#59-367

7.

115V, MI-150 Fiber Optic Illuminator

#59-235

8.

4.25" x 3.37" Fiber Optic Backlight

#39-826

 

The image setup consists of a number of components, which are differentiated as optical and imaging components. The imaging products that will be discussed are the camera and illumination, and the optical components that will be discussed include the microscope objective lens and optical filters.

Figure 1: Brightfield Image of Dermal Tissue

 

Figure 2: Darkfield Imaging of Dermal Tissue

 

When comparing Figures 1 and 2, the visual differences are significant. A brightfield image is formed with the illumination source below the sample, and then transmitted light propagates through the sample to the sensor forming a bright, white background with sharp color. A darkfield image is formed by directing light at an oblique angle through the sample, forming a hollow cone of light which is collected by the objective. Darkfield illumination typically yields a dark background with sharp color, but in the case of Figure 2, the collagen and muscle fibers interfered with the light path and caused a blur of light and color. The dark background is hardly evident and only two distinct colors are visible. When analyzing histological stains, brightfield illumination is the preferred technique for lighting a sample.

Figure 3: Brightfield Image of Dermal Tissue filtered with Green

Figure 4: Brightfield Image of Dermal Tissue filtered with Red

 

When comparing Figure 3 with Figure 4, there is once again a significant visual difference. The most obvious feature is the change in color from green to red due to a different hardcoated filter being positioned in the optical path. The less obvious difference is the varying contrast levels caused by the filters at specific regions of the dermal tissue. For example, Figure 3 exhibits a distinct ring at the central region of the cell with additional matter within. In Figure 4, the ring is extremely faint and the internal matter is not visible. With that said, the cell and surrounding dense materials are more evident in Figure 3, whereas the muscle fibers and collagen are more pronounced in Figure 4.

 

Researchers have discovered a number of methods to quickly and accuray diagnose many ailments, such as many forms of cancer. As technologies continue to advance at an increasing rate, the cost of histology analysis will continue to decrease as images and videos can be easily transmitted across the globe. Even with constantly changing technology, the trichrome stain is still one of the most powerful techniques available in the field of histology and diagnostics over 100 years later.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
欧美日韩精品久久久免费观看 | 亚洲色区在线观看| 成人久久天堂| av无码人妻一区二区三区大肚婆| 月韩无码在线观看| 国产精品白浆无码流出免费看软件| √天堂中文在线看| 久久综合给合久久狠狠97色| 欧洲熟女自拍视频| 97国产精品无码| 黑色丝袜自慰喷水网站| 国产亚洲毛片v区二区三区| 成武县| 综合成人网友亚洲偷自拍| 日韩无码一区二区三区四区久久久| 38色在线视频视频| 少妇系列AⅤ| 99精品视频在线观看免费| 中文在线亚洲字幕国产| 婷婷五月在线影院| 一色网男人的天堂| 邪恶秀 久久| 亚洲av成本人无码网站| 久久国产免费观看高清视频| 找免费一级黄片| 欧美亚洲中日韩| 人妻日韩一区二区| 国产精品久久久久久亚洲按摩| 欧美乳乱| 四虎影院大全| 插放欧美乱妇日本无乱码特黄大片 | 精品久久久久久亚洲女厕| 国产V亚洲V日韩| 色综 久久| 日韩无码 人妻| 99在线观看视频免费精品| 久久九九免费国产精品街| 免费观看无遮挡无码| 国产精品激情高潮| 亚洲精品夜夜黄无码99| 香蕉视频在线观看免费国产婷婷 |