泽连斯基首次公开指责中国,成人片在线免费看,奇米第四狠狠婷婷,白浆 91av

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > Advantages of Fresnel Lenses

技術(shù)文章

Advantages of Fresnel Lenses

技術(shù)文章

Advantages of Fresnel Lenses

Fresnel lenses consist of a series of concentric grooves etched into plastic. Their thin, lightweight construction, availability in small as well as large sizes, and excellent light gathering ability make them useful in a variety of applications.Fresnel lenses are most often used in light gathering applications, such as condenser systems or emitter/detector setups. They can also be used as magnifiers or projection lenses in illumination systems, and image formulation.

A Fresnel (pronounced fray-NEL) lens replaces the curved surface of a conventional optical lens with a series of concentric grooves. These contours act as individual refracting surfaces, bending parallel light rays to a common focal length (Figure 1). As a result, a Fresnel lens, while physically narrow in profile, is capable of focusing light similar to a conventional optical lens but has several advantages over its thicker counterpart.

 

THE THEORY OF FRESNEL LENSES

The driving principle behind the conception of a Fresnel lens is that the direction of propagation of light does not change within a medium (unless scattered). Instead, light rays are only deviated at the surfaces of a medium. As a result, the bulk of the material in the center of a lens serves only to increase the amount of weight and absorption within the system.

 

To take advantage of this physical property, 18th-century physicists began experimenting with the creation of what is known today as a Fresnel lens. At that time, grooves were cut into a piece of glass in order to create annular rings of a curved profile. This curved profile, when extruded, formed a conventional, curved lens – either spherical or aspherical (Figure 2). Due to this similar optical property compared to a conventional optical lens, a Fresnel lens can offer slightly better focusing performance, depending upon the application. In addition, high groove density allows higher quality images, while low groove density yields better efficiency (as needed in light gathering applications). However, it is important to note that when high precision imaging is required, conventional singlet, doublet, or aspheric optical lenses are still best.

MANUFACTURING FRESNEL LENSES

The first Fresnel lenses were made by tediously grinding and polishing glass by hand. Eventually, molten glass was poured into molds, but it was only with the development of optical-quality plastics and injection-molding technology in the 20th-century that the use of Fresnel lenses in many industrial and commercial applications became practical.

 

Fresnel lenses can be manufactured from a variety of substrates. They are manufactured from acrylic to polycarbonate to vinyl, depending on the desired wavelength of operation. Acrylic is the most common substrate due to its high transmittance in the visible and ultraviolet (UV) regions, but polycarbonate is the substrate of choice in harsh environments due to its resistance to impact and high temperature.

 

APPLICATION EXAMPLES

While French physicist Augustin-Jean Fresnel (1788 - 1827) was not the first to conceptualize a Fresnel lens, he was able to popularize it by integrating it into lighthouses. Since then, Fresnel lenses have been utilized in a variety of applications, from light collimation and light collection to magnification.

 

Light Collimation

 

A Fresnel lens can easily collimate a point source by placing it one focal length away from the source. In a finite-conjugate system, the grooved side of the Fresnel lens should face the longer conjugate (Figures 3 - 4) because this produces the best performance.

Figure 3: Light Collimation of a Point Source with a Fresnel Lens

 

Light Collection

 

One of the most common applications for a Fresnel lens is the collection of solar light, which is considered very nearly parallel (an infinite-conjugate system). Using a Fresnel lens for light collection is ideal for concentrating light onto a photovoltaic cell or to heat a surface. For example, a Fresnel lens can be used for popular home maintenance such as heating a home or pool! In these cases, the overall surface area of the lens determines the amount of collected light.

Figure 4: Light Collimation of a Point Source with a Fresnel Lens

 

Magnification

 

Another common application for a Fresnel lens is magnification. It can be used as a magnifier or projection lens; however, due to the high level of distortion, this is not recommended. Also, the image quality does not compare to that of a higher-precision system given the amount of distortion.

 

While commonly found in solar applications, Fresnel lenses are ideal for any application requiring inexpensive, thin, lightweight positive lens elements. Fresnel lenses are not new technology, but their pervasiveness has increased with improvements in manufacturing techniques and materials. Fresnel lenses are truly unique optical lenses which make them a great tool for a range of interesting and fun optical designs.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢(xún)
QQ客服
QQ:17041053
電話咨詢(xún)
0510-68836815
關(guān)注微信
入妻无码久久久久免费| 日韩欧美国产91| 白丝美女被啪啪的视频网站 | 91精品国产午夜福利在线观看| 欧美国产大片在线看| 久久久老熟女一区二区三区91| 精品人妻aV区一二三色欲欲 | 欧美一区二区三区爱爱| 后入易阳| 久久久久校花AV| 欧美亚洲国产一区| 欧美牲交a欧美牲交aⅴ免费 | 不卡高清无码视频在线| 国产精品三级片久久| 在线电影 无码| 无码免费中文字幕视频| 日韩网站免费高清| 92福利精品人妻| 蜜桃第一页| 国产午夜亚洲精品一级在线| 国产精品自偷自拍对白| 亚洲喷水视频| F免费观看四虎精品国产| 中文字幕亚洲乱码熟女一区二区视频| 中文字幕久久一区二区| 精品第一国产综合精品aⅴ| 精品久久中文字幕亚洲一区| 视频偷拍久久| 欧美综合操操操操操操| 欧美精品一区二区精品久久另类| 久久国产精品日本波多野结衣| 婷婷综合色姑娘| 精品一区二区久久| 亚洲中文字幕在线精品产品白色| 日韩无码录像片| 在线看片人成视频免费无遮挡 | 国产免费制服丝袜网站| 日韩国产精品亚洲А∨天堂免| 黄av在线| 婷婷六月天视频| 亚洲欧洲中文字幕无码不卡|